Recycling Messe Dortmund, 2023-03-29

Digitale Transformation im Forschungssektor Metallrecycling zur Unterstützung der Kreislaufwirtschaft von Metallen

Wei Song, Fabian Diaz, Bernd Friedrich

Research on Metal Recycling: Requirements for Metals

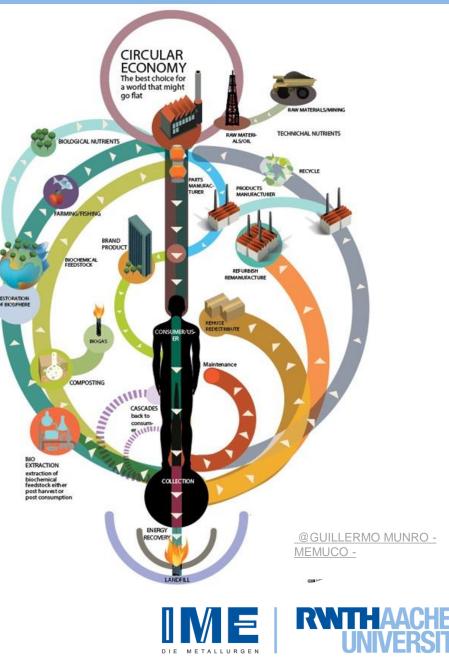
The circular economy is demanding **high performance** in recycling technology:

The Products

From waste to products: quality and performance

The **Processes**

Efficient processing: energy and materials usage optimization


The Socio-economics

Viable process: tracking the value chain and developing senseful incorporation of the recycling strategies

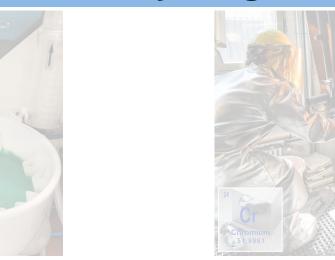
The Environmental Footprint

Sustainable Processing: safeguarding the natural resources and protecting the environment from wastes and emissions

Current recycling technology demand predictive skills and rapid action in short period of time!

Current Challenges in the Metallurgical Recycling Sector

Hydrometallurgy:


- Constant need of optimization of kinetics and process parameters
- Time-consuming laboratory analysis
- Relatively sensitive processing (impurities, temperatures reagents etc.)

Pyrometallurgy:

- Difficult material characterization
- Extreme environments for sensors (High temperatures, reactive atmospheres)
- Energy-intensive processing → rapid decision

Part Sam Could digitalization address the technical challenges in metal recycling?

Current state in industry

- Digital tools
 - Enterprise Resource Planning (ERP) software for waste management and recycling
 - Index online tool for metal recycling machine
- Sorting process
 - Iaser object detection (LOD) system from TOMRA-Sorting
 - Redwave XRF/C for metal sorting
 - Hand-held LIBS-Analysis for light elements
 - AI-powered robotic sorting systems from ZenRobotics

Current state in research

- Process simulation and system modelling
- Measurement and data infrastructure
- Data-driven solutions for concrete use cases

Digitalization in Metal Recycling Process

Why it is **necessary** for research institutes to accelerate the progress of digitalization?

- Better know-how in the early stage of the development
- Training for experienced engineers with digitalization skills and solid understanding of the metallurgical field

Why it is **difficult** for research institutes to implement digitalization?

- Limited attention and budget for digitalization topics
- Communication difficulties

Which **aspects** need to be located for digitalization in research institutes?

- Digital tools to support in experimental design
- Sensor technology and online monitoring for increased process transparency
- Centralized data- and information management system

IME Activities in Digitalization – Overview

Process Simulation and System Modeling

- Quantification of process indicators through mathematical modeling
- Thermodynamic simulation
 - with FactSage
 - with HSC Chemistry

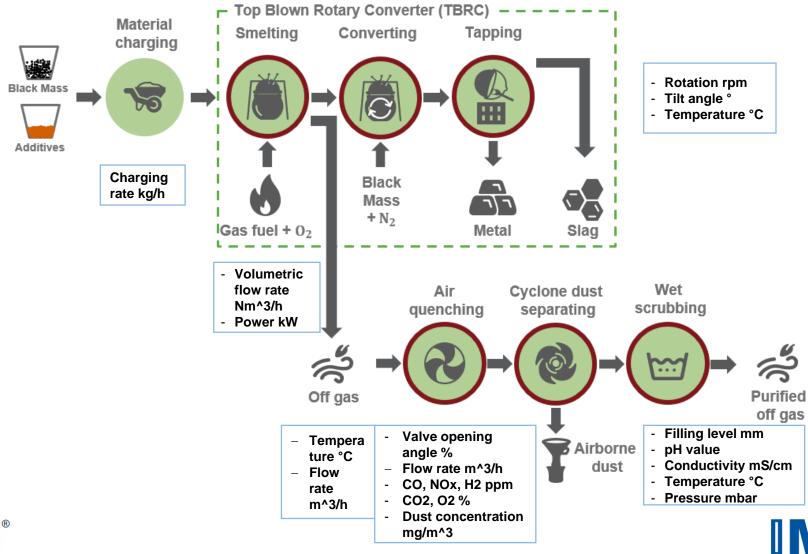
SCADA System and Online Monitoring

- Siemens WinCC system
 - Furnace monitoring
 - Off-gas cleaning system monitoring
- LabVIEW Program
 - Hydrometallurgical recycling processes

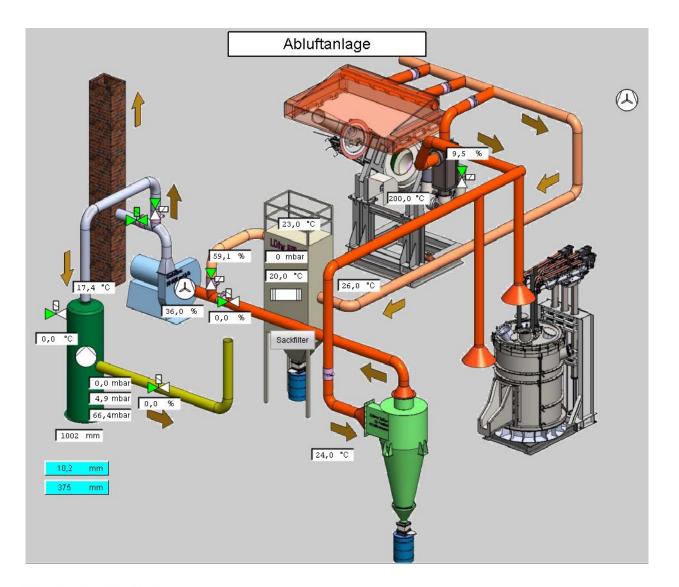
Sensor Technology and Control System

- Temperature & Pressure measurements
- Gas & Water analytics
- Hydraulic control system
- Valve & Pump control systems

Data Management and Data Analysis


- Centralized experiment database
- Data-driven solutions
 - Online process evaluation
 - System identification modelling

IME Activities in Digitalization – TBRC Recycling Process


Definition of the influencing factors along the process chain

BMBF-DiRectION, https://www.greenbatt-cluster.de/en/projects/direction/

IME Activities in Digitalization – TBRC Recycling Process

SCADA system and online monitoring

Overview of all signals in off-gas cleaning system at one glance

Control elements

- Valves
- Pumps
- Fan

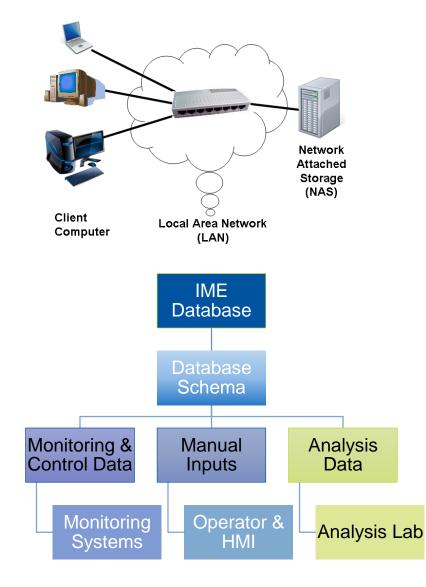
Measurements


- Thermocouples
- Pressure sensors
- Gas analytics
- Filling level meter
- Water analytics

IME Activities in Digitalization – Hydrometallurgical Recycling Processes

Online Data Acquisition System for Hydrometallurgical Recycling Process

IME Activities in Digitalization – Experiment Database


IME experiment database

- Network Attached Storage (NAS)
- Relational Database Management System (RDBMS)
- Database server: MariaDB

METALLURGY

 Data importation through an interface program (developed in python)

phpMyAdmin	← 🗊	Server:	MariaDB 10 » 🍵 E	atabase:	testDaten	bank1 » 厉 Table	e: testTable							\$
🟡 🗐 😡 🗊 🌼 😋	п в	rowse	M Structure	📄 sa	IL 🔍 :	Search 📑 I	nsert 🔜	Export 📱	Import	🖭 Pr	ivileges	🥜 Operatio	ons 🕮 1	riggers
tecent Favorites														
New A	C	urrent se	election does not c	ontain a ι	unique colu	umn. Grid edit, cl	heckbox, Edit	, Copy and D	elete features	s are no	t availal	ble. 😡		
information_schema		bowing	rows 0 - 24 (8182 t	otal Que	ry took 0 (003 seconds)								
mysql performance schema		0		otal, Quo	y 100K 0.0	(000 3600 hus.)								
testDatenbank1	SELECT	FROM	`testTable`											
- New									Profiling [Edit inli	ne] [Edi	it][Explain SQL	[Create Pl	P code] [Refree
TABLE 1														
e testTable	E E	1 ~	> >> Nur	nber of ro	ws: 25	✓ Filter r	ows: Search	this table						
Columns														
	+ Optio	ns			Solid-									
Acid	Date	Acid	Volume Concentration	Black Mass	liquid	Temperature	Retention time	Rotation rate	Real time	time	pH	TempProcess	Redox potential	Conductivity
Black Mass			Concentration	mass	ratio		ume	rate					potential	
Conductivity	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:03 AM	1	0.12	37.3	412.4	NaN
Date	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021	2	0.12	37.3	412.4	NaN
PH	12-13	ны	114 300111	Jug		70	12011111	Jooipin	9:48:03 AM	2	0.12	51.5	412.4	INdin
Real time	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:05 AM	3	0.12	37.3	412.4	NaN
Retention time	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:05 AM	4	0.12	37.3	412.4	NaN
Rotation rate Solid-liquid ratio	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:06 AM	5	0.12	37.3	412.5	NaN
Temperature	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:08 AM	6	0.12	37.3	412.5	NaN
TempProcess	12-13	HCI	1M 500ml	50g		70	120min	300rpm	12/13/2021 9:48:08 AM	7	0.12	37.4	412.4	NaN
Lime														

Conclusion and Outlook

Digitalization in metal recycling process

Further development required for both industry and research institutes

Sensor technology and online monitoring system

- Improved process transparency
- Solutions for process analysis and further process optimization
- New sensor technologies are required for abrasive environments

Centralized data management system

- Structured and long-term data archiving
- Overview of all experimental work
- Information exchange and knowledge sharing platform

Photo: <u>RWTH Center for</u> <u>Circular Economy</u>

Recycling Messe Dortmund, 2023-03-29

Thank you for your attention!

IME Process Metallurgy and Metal Recycling RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich

www.ime-aachen.de

WSong@ime-aachen.de

Digital Transformation in Metal Recycling

[1] Metal Recycling: Will digitalization solve key industry challenges?, https://www.amcsgroup.com/blogs/metalrecycling-will-digitalization-solve-key-industry-challenges/

[2] ERP for Waste Management and Recycling Industry- A Complete Guide, https://www.deskera.com/blog/erpfor-waste-management-and-recycling-industry/

[3] Smart and digital – Metso Outotec launches Index online tool for metal recycling machines, https://www.mogroup.com/corporate/media/news/2021/10/smart-and-digital--metso-outotec-launches-index-online-tool-for-metal-recycling-machines/

[4] New Technology in Metal Recycling, https://waste-management-world.com/metals/new-technology-in-metalrecycling/

[5] Laser-based sensor technology for recycling metals instead of mining mineral resources, https://www.ilt.fraunhofer.de/en/press/press-releases/2021/1-21-metal-recycling-projects-plus-and-revamp.html

[6] Robots to sort scrap metal at Skrotfrag in Sweden, https://www.recovery-worldwide.com/en/artikel/robots-tosort-scrap-metal-at-skrotfrag-in-sweden-3356654.html

[7] https://www.terex.com/zenrobotics/

[8] Reuter, M.A., van Schaik, A. & Gediga, J. Simulation-based design for resource efficiency of metal production and recycling systems: Cases - copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int J Life Cycle Assess 20, 671–693 (2015). https://doi.org/10.1007/s11367-015-0860-4

[9] Reuter, M.A. Digitalizing the Circular Economy. Metall Mater Trans B 47, 3194–3220 (2016). https://doi.org/10.1007/s11663-016-0735-5

[10] Abadías Llamas, A., Bartie, N.J., Heibeck, M. et al. Simulation-Based Exergy Analysis of Large Circular Economy Systems: Zinc Production Coupled to CdTe Photovoltaic Module Life Cycle. J. Sustain. Metall. 6, 34–67 (2020). https://doi.org/10.1007/s40831-019-00255-5

[11] Hannula, J.; Godinho, J.R.A.; Llamas, A.A.; Luukkanen, S.; Reuter, M.A. Simulation-Based Exergy and LCA Analysis of Alumi-num Recycling: Linking Predictive Physical Separation and Re-melting Process Models with Specific Alloy Production. J. Sus-tain. Met. 2020, 6, 174–189. https://doi.org/10.1007/s40831-020-00267-6

[12] Ralph, B.J.; Woschank, M.; Miklautsch, P.; Kaiblinger, A.; Pacher, C.; Sorger, M.; Zsifkovits, H.; Stockinger, M. MUL 4.0: Systematic Digitalization of a Value Chain from Raw Material to Recycling. Proceedia Manuf. 2021, 55, 335–342.

[13] Abou Baker, N., Szabo-Müller, P., Handmann, U. (2021). A Feature-Fusion Transfer Learning Method as a Basis to Support Automated Smartphone Recycling in a Circular Smart City. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_29

Digital Transformation in Metal Recycling

[14] Michaud Paradis, M.-C.; Doucet, F.R.; Rousselot, S.; Hernández-García, A.; Rifai, K.; Touag, O.; Özcan, L.Ç.; Azami, N.; Dollé, M. Deep Learning Classification of Li-Ion Battery Materials Targeting Accurate Composition Classification from Laser-Induced Breakdown Spectroscopy High-Speed Analyses. Batteries 2022, 8, 231. https://doi.org/10.3390/batteries8110231

